Влияние процесса топливоподачи на рабочий процесс дизеля
Основными параметрами топливоподачи, которые оказывают наибольшее существенное влияние на рабочий процесс дизеля, являются: качество распыливания топлива, характеристика впрыскивания, способ смесеобразования и т. д. Однако для организации рабочего процесса крайне важными являются не только количественные и качественные показатели процесса топливоподачи, но и привязка процесса топливоподачи к положению поршня в рабочем цилиндре двигателя на такте сжатия. Существенное влияние на весь процесс сгорания топлива в рабочем цилиндре оказывает начальный этап поступления топлива в камеру сгорания до его воспламенения и сгорания. Этот период получил название периода задержки самовоспламенения топлива τ.
Диаграмма топливоподачи дизеля
На развернутой индикаторной диаграмме рабочего процесса дизеля (рис. 5.22) продолжительность этого периода определяется как угловой промежуток от момента поступления первых порций топлива в рабочий цилиндр (точка 1) и до момента отрыва линии сгорания от линии сжатия (точка 2). Под линией сжатия подразумевается кривая изменения давления в рабочем цилиндре при отсутствии подачи топлива, под линией сгорания кривая изменения давления при сгорании топлива.
На протяжении периода задержки самовоспламенения протекает ряд последовательно-параллельных физико-химических процессов, получивших название предпламенных.
При попадании в рабочий цилиндр первых порций топлива часть теплоты заряда расходуется на их прогрев и испарение. В результате температура и давление в цилиндре несколько снижаются, кривая сгорания идет ниже кривой сжатия (позиция А на рис. 5.22).
По мере испарения топлива начинаются химические реакции образования первичных комплексов, получивших название предпламенных реакций. Эти реакции могут носить как экзо-, так и эндотермический характер. Только после накопления в камере сгорания продуктов первичных реакций начинается их взаимодействие с кислородом воздуха, носящее, как правило, цепной характер и сопровождающиеся выделением большого количества тепла. Повышение температуры заряда приводит к повышению давления, в результате чего кривая сгорания пересекает кривую сжатия, что и соответствует моменту окончания периода задержки самовоспламенения.
Продолжительность периода задержки самовоспламенения в основном определяется температурой заряда на момент впрыска топлива, свойствами самого топлива, качеством его распыливания. Последнее в значительной степени зависит от показателей работы топливной аппаратуры.
Для получения заданного характера изменения давления в рабочем цилиндре нужно учитывать время, необходимое на предпламенные процессы. Для этого момент начала подачи топлива устанавливают раньше теоретически определенного момента начала тепловыделения на величину задержки самовоспламенения. На практике влияние периода задержки самовоспламенения на рабочий процесс учитывается путем установки угла опережения подачи φоп.
С увеличением φоп топливо в цилиндр впрыскивается раньше (точка 1` на рис. 5.22), что приводит к его более раннему воспламенению. В результате большее количество теплоты выделяется еще до прихода поршня в ВМТ, что приводит к более резкому возрастанию давления и росту его максимального значения. Рабочий процесс становится более динамичным и более жестким. С дальнейшим увеличением угла опережения такая тенденция будет ослабевать, так как топливо будет впрыскиваться в среду с более низкой температурой и давлением, а это приведет к увеличению периода задержки самовоспламенения.
С увеличением φоп экономичность дизеля сначала возрастает, так как некоторое увеличение работы сжатия до ВМТ с избытком компенсируется повышением термического КПД цикла вследствие подвода теплоты к рабочему телу при более высокой температуре. При больших значениях угла φоп работа сжатия существенно возрастает и становится больше, чем выигрыш в термическом КПД, поэтому экономичность дизеля падает.
С уменьшением угла φоп, особенно до значений, соответствующих началу сгорания топлива после ВМТ (точка 1` на рис. 5.22), происходит снижение механической напряженности двигателя, но одновременно снижается и его экономичность. Сгорание основной порции топлива смещается на линию расширения, что повышает температуру отработавших газов и теплонапряженность деталей цилиндропоршневой группы.
Очевидно, что угол опережения впрыска должен увеличиваться с повышением оборотов двигателя, чтобы обеспечить необходимый временной промежуток на протекание предпламенных процессов. Кроме того, изменение нагрузки на двигатель, давление наддува, внешних условий, сорта топлива могут потребовать корректировки угла опережения подачи топлива.
Угол опережения является важным параметром воздействия на показатели рабочего процесса, экономичность двигателя, его экологические показатели. В этой связи основная масса топливных систем современных судовых дизелей оборудуются устройствами для автоматического изменения данного параметра в зависимости от режима работы двигателя. Устройство таких систем нами было рассмотрено в предыдущих разделах. Следует отметить, что наиболее полно реализовать принцип выбора оптимального угла опережения удается только в системах с электронным управлением топливоподачей.
В ряде современных высоко- и среднеоборотных дизелей предусмотрено изменение характера протекания рабочего процесса в зависимости от нагрузочно-скоростного режима. В частности, переход с классического цикла со смешанным подводом теплоты на режимах малых и средних нагрузок на цикл Миллера на режимах нагрузок, близких к максимальным.
Такой переход сопровождается одновременным изменением фаз газораспределения и топливоподачи. На рисунке 5.23 представлен вариант технического решения, позволяющего осуществлять такой переход, который разработан фирмой MaK и реализован в двигателях серий M 20–M 43.
Принцип работы устройства основан на изменении положения ролика рычажного толкателя относительно кулачковой шайбы распределительного вала. Для этого ось рычага закреплена эксцентрично на валу, который имеет возможность проворачиваться на угол, близкий к 180°. В результате толкатель совершает поступательное движение, изменяя угол опережения подачи топлива и углы начала открытия и закрытия впускного клапана.
Привод эксцентричных валов роликовых толкателей осуществляется от пневматического серводвигателя через систему шестерен. Предусмотрен также и ручной перевод двигателя с одного режима на другой.
Изменение угла опережения в данной конструкции позволяет не только обеспечить оптимальный закон тепловыделения на режиме максимальной мощности, но и улучшить условия распыливания топлива при снижении нагрузки за счет смещения начала впрыска на более скоростной участок подъема плунжера.
На рисунке 5.24 показано устройство для изменения угла опережения подачи, используемое фирмой MAN в своих среднеоборотных двигателях. В данном устройстве вал привода насосов соединяется с шестерней привода через наклонное шлицевое соединение. Ступица шестерни при осевом перемещении скользит вдоль шлицов и проворачивает распределительный вал относительно коленчатого на некоторый угол, величина которого определяется углом наклона шлицов к оси вала и величиной осевого перемещения. Для осевого перемещения шестерни вместе со ступицей используется гидравлический сервопривод, располагаемый в торце вала на остове двигателя.
На высокооборотных двигателях, которые работают на разных скоростных режимах, находят применение автоматические муфты опережения впрыска центробежного типа. Они предназначены для автоматического изменения угла опережения впрыска топлива при изменении числа оборотов коленчатого вала двигателя. Схематически работа такой муфты показана на рисунке 5.25. В корпусе муфты, через который осуществляется ее привод, смонтирована полумуфта, через которую приводится вал ТНВД блочного типа. Полумуфта имеет выступы, которые с одной стороны нагружены пружинам, а с другой упираются в эксцентрики, выполненные на неуравновешенных грузах. Таким образом, полумуфта занимает определенное положение относительно корпуса. При увеличении частоты вращения на неуравновешенную часть грузов начинает действовать центробежная сила. Под действием этой силы грузы, преодолевая усилие пружин, раздвигаются и через эксцентрики, проворачивая полумуфту на угол γ против направления вращения корпуса, изменяют тем самым угол опережения подачи.
Продолжительность впрыскивания (угол φппф) также оказывает большое влияние на рабочий процесс. Для повышения экономичности и снижения температуры отработавших газов необходимо обеспечить сравнительно небольшое значение угла φппф на номинальном режиме. Этот угол можно уменьшить путем увеличения максимального давления впрыска или увеличения эффективного проходного сечения распылителя. В первом случае возрастут механические нагрузки на детали топливной аппаратуры, а во втором — на режимах малых нагрузок будет низкое давление впрыскивания, что приведет к ухудшению распыливания топлива.